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In this paper, an identification technique in the dynamic analyses of rotor–bearing–

foundation systems called the pseudo mode shape method (PMSM) was improved in

order to enhance the accuracy of the identified dynamic characteristic matrices of its

foundation models. Two procedures, namely, phase modification and numerical

accuracy. Generally, it is always necessary to build the whole foundation model in

studying the dynamics of a rotor system through the finite element analysis method.

This is either unfeasible or impractical when the foundation is too complicated. Instead,

the PMSM uses the frequency response function (FRF) data of joint positions between

the rotor and the foundation to establish the equivalent mass, damping, and stiffness

matrices of the foundation without having to build the physical model. However, the

accuracy of the obtained system’s FRF is still unsatisfactory, especially at those higher

modes. In order to demonstrate the effectiveness of the presented methods, a solid

foundation was solved for its FRF by using both the original and modified PMSM, as well

as the finite element (ANSYS) model for comparisons. The results showed that the

accuracy of the obtained FRF was improved remarkably with the modified PMSM based

on the results of the ANSYS. In addition, an induction motor resembling a

rotor–bearing–foundation system, with its housing treated as the foundation, was

taken as an example to verify the algorithm experimentally. The FRF curves at the

bearing supports of the rotor (armature) were obtained through modal testing to

estimate the above-mentioned equivalent matrices of the housing. The FRF of the

housing, which was calculated from the equivalent matrices with the modified PMSM,

showed satisfactory consistency with that from the modal testing.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the construction of the typical industrial machinery, the rotor, bearings, and foundation are often perceived as the
main components of rotating machinery systems. Among these types of machines, the turbomachinery used in power
plants is much larger than the smaller ones, such as the lathe or milling machines commonly used in machine shops.
To ensure the system’s stability under designed working speeds, the foundations of machine structures tend to be more
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complicated and stronger than ever for those low-speed machines, such as the former, and for the high-speed cutting
machines like the latter. The foundation effects then become more significant in determining the dynamic properties of the
system. Kang et al. [1] discussed the effects of simplistic foundations as the lumped-mass, continuous-beam, and plate-
type forms on the dynamic characteristics of the rotor systems. A stiffer foundation suspension along with the larger
foundation size was suggested to enlarge the range of operating speed and to avoid the rigid-body motion of the foundation
within a given range of the operating speed.

Nevertheless, design analysts often find that even with the use of a sophisticated computer software program, it is still
difficult and time-consuming to establish complex system models using the finite element (FE) method. Many researchers
have attempted to establish the accurate foundation models from the experimental data without using the FE method.
To date, foundation identification methods can generally be classified into two categories: (a) methods based on the data
from the frequency response function (FRF) curves that are adopted from the experimental modal testing of the foundation
alone (excluding the rotor) [2–8], and (b) methods using vibration data at the rotor or the foundation in the run-down or
run-up of whole systems [9–16].

For the former methods, the modal parameters, modal matrix, and equivalent matrices of the most significant modes
are estimated from the FRF data of the foundation and are introduced into the equation of motion for the overall system in
order to explain the foundation behaviour. Conversely, the second type of identification method does not require
researchers to perform the modal testing. Instead, these methods use the transient vibration data at the rotor journals or
bearing supports to establish the foundation models. In recent years, these methods have been adopted to identify, locate,
and evaluate the severity of the rotating machinery’s malfunction [17–19].

Using run-up or run-down data to identify the foundation characteristics is perhaps more suitable and convenient than
using FRF data in practice. The methods with run-up or run-down data require knowing more correct system information
such as rotor models and bearing characteristics. The actual challenge is to find the methods that can withstand noise and
modelling errors. When systems have the design characteristic of easy rotor disassembly, the methods using the FRF data of
foundations are usually well considered. The major disadvantage of using FRF data is that the number of modes identified
must equal the number of measured degrees of freedom (DOFs). If more accurate dynamic properties of the system are to
be obtained, more measuring points should be added to the substructure.

As a result, an innovative strategy called the pseudo mode shape method (PMSM) was presented by Yang et al. [20,21].
This method adopted the FRF data at the joint points between the mother structure and the substructure in order to
identify the equivalent matrices with complex numbers for the 2-D beam and 3-D bearing support substructures. The
PMSM has the advantageous feature of not requiring the number of modes identified to be equal to the number of
measured DOFs in the modelling of the substructure.

The aim of this paper is to substantially improve the accuracy of PMSM by introducing the procedures of phase
modification and numerical optimisation. The procedures determined the foundation’s equivalent mass, damping, and
stiffness matrices with real numbers instead of complex numbers through the phase modification technique. It can readily
be integrated into the FE model of the commercial software or self-developed programs for replacing the foundation’s
model. Thus, a significantly large amount of modelling efforts and computing time are saved. However, some of the
commercial FE software either do not have the ability to allow users to access the data files to change the matrices, or alter
limitations on the matrices’ size. Therefore, the identified equivalent matrices were used in the authors’ self-developed FE
software [22] to replace the foundation model in solving the system’s FRFs.

For verification purposes, the typical FE analysis of a full rotor-bearing-foundation system model was constructed with
the commercial ANSYS 10.0 software to obtain the FRF of the full system. In the meantime, the model of foundation alone
(excluding all others, such as bearing and rotor) was also excited with a harmonic force at bearing joint positions to obtain
the FRF of these positions. The foundation’s FRF at the contact points of the rotor was then identified in the modified PMSM
to solve for the identified equivalent mass, damping, and stiffness matrices. Finally, the solid foundation in this case was
removed and replaced with the equivalent mass, damping, and stiffness matrices in the FE model of the authors’ analysis
program to solve for the full system’s FRF. As calculated with the current algorithm, the resulting FRFs of the system were
found to be extremely close to those of the ANSYS’s. In addition, these identified equivalent matrices can be used to solve
back for the foundation’s FRF to check its correctness when compared to that of the ANSYS’s. All the results showed that a
highly accurate dynamic analysis could be achieved with the proposed method. Other than the above-mentioned
numerical verification, an experimental modal testing on a realistic motor housing was also conducted to obtain the above-
mentioned equivalent matrices of its dynamic characteristics. The FRF of the realistic motor housing was also compared
with that from the modified PMSM in order to show its practical applications in various engineering problems.
2. Fundamentals of the modified pseudo mode shape method

With the procedures of phase modification and numerical optimisation introduced into the PMSM, the suitable
components of the respective mode shape vectors (denote each individual mode) in representing the foundation were thus
determined. Hereafter, the pseudo mode shape matrix was built through the column arrangement of these mode shape
vectors. With the pseudo mode shape matrix and modal parameters, the equivalent mass, damping, and stiffness matrices
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of the foundation were then estimated. These equivalent matrices, combined with the FE rotor model and bearing
coefficients, became the equation of motion for the whole system.

2.1. Definition of frequency response functions

The derivative processes of FRFs are described here, and the details can be found in [23]. The FRF data of any structure
can also be obtained through experimental modal testing or by means of the FE simulation method. For the vibration
equation of a system, the mathematical model can be expressed as follows:

½M�f €xg þ ½C�f _xg þ ½K�fxg ¼ ff g; (1)

where [M], [C], and [K] are the mass, damping, and stiffness matrices of the system, respectively. Moreover, {x} and {f} are
the displacement and external force vectors, respectively. In Eq. (1), the displacement vector of the system can be
represented in the modal coordinate with the following mode shape matrix:

fxgN�1 ¼
XN

r¼1

ZrfVrg ¼ ½U�N�NfZgN�1 (2)

where N is the total number of components in the modal coordinate; Zr and {Vr} are the components of the modal
coordinate and the mode shape vector at the rth mode, respectively; [U]=[{V1},{V2},y, {VN}] denotes the mode shape
matrix; and {Z}={Z1,Z2,y,ZN}T refers to the modal coordinate vector. Substituting Eq. (2) into Eq. (1), the equation of spatial
motion is transformed into the equation of decoupled motion:

½M�½U�f €Zg þ ½C�½U�f _Zg þ ½K�½K�fZg ¼ ff g: (3)

Multiplying the matrix [U]T at both sides of Eq. (3) produces the following:

f €Zg þ f _Zg þ fZg ¼ ½U�T fFg ¼ fmg; (4)

where ; , and are the diagonal mass, damping, and stiffness matrices, respectively; and {m} is the modal force
vector.

The equation of motion at the rth mode is represented as follows:

mr €Zr þ cr _Zr þ krZr ¼ mr ; (5)

where mr ¼ fVrg
T ff g ¼

PN
j¼1 fjrfj and fjr are the jth components of the rth mode shape vector. By considering the harmonic

excitation acting on the system, the component of the modal coordinate and the modal force at the rth mode can be
designated as Zr ¼ Ẑr eiot and mr ¼ m̂r eiot , respectively. Eq. (2) becomes the summation of a series consisting of the exciting
force, components of the mode shape, and the modal parameters:

fx̂gN�1 ¼
XN

r¼1

Ẑr Vrf g ¼
XN

r¼1

XN

j¼1

fjr f̂ j

mr½o2
r �o2 þ 2ioxror�

Vrf g; (6)

where fxg ¼ fx̂g eiot is the displacement vector of the spatial model, and fj ¼ f̂ j eiot is the exciting force. In addition, or and
xr stand for the rth natural frequency and damping ratio (called modal parameters), respectively. Considering just a single
component f̂ j of the exciting force, the ith component of the displacement vector can be rewritten as

x̂i ¼
XN

r¼1

XN

j¼1

firfjr f̂ j

mr ½o2
r �o2 þ 2ioxror �

: (7)

The FRF Hij is defined as the ratio of the ith displacement component x̂i to the jth exciting force component f̂ j. It can also
be shown as follows:

x̂i

f̂ j

¼ Hij ¼
XN

r¼1

Hij;r ¼
XN

r¼1

firfjr

mr½o2
r �o2 þ 2ioxror�

(8)

where Hij,r is the peak value of FRF at the rth mode. Eq. (8) represents the relationship between the single exciting force and
displacement. However, the situation of multiple excitations is not considered in the following theory.

2.2. The pseudo mode shape method

The simple scheme of a rotor–bearing–foundation system shown in Fig. 1 demonstrates the PMSM operation. The rotor
was treated as the mother structure, while the foundation and two bearing supports were treated as the substructure.
Considering only the translation DOFs in the X and Y directions at each of the bearing supports, the mode shape vectors of
the bearing–foundation structure were represented with a total of four DOFs. Eq. (8) involves the first four natural
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Fig. 1. Schematic of a rotor–bearing–foundation system.
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frequencies (N=4) that can be expressed as follows:

Hij ¼
fi1fj1

m1½o2
1 �o2 þ 2iox1o1�

þ
fi2fj2

m2½o2
2 �o2 þ 2iox2o2�

þ
fi3fj3

m3½o2
3 �o2 þ 2iox3o3�

þ
fi4fj4

m4½o2
4 �o2 þ 2iox4o4�

;

(9)

where i=1,2,,y, 4 and j=1,2,y, 4. Assume that the first term at the right-hand side of Eq. (9) was dominant in affecting the
values of the FRFs when o=o1, whereas the other terms had a weak influence on these FRFs. Thus, the second, third, and
fourth terms can be omitted. The simplified form of Eq. (9) can now be presented as follows:

Hij;1 ¼
fi1fj1

m12ix1o2
1

: (10)

As mentioned, with two DOFs at each of two bearing supports, there were a total of four DOFs for all of the supports of
the whole system. After this, a 4� 4 symmetric frequency response function matrix was built as follows:

FRF matrix ¼

H11;r

H21;r H22;r

H31;r H32;r H33;r

H41;r H42;r H43;r H44;r

2
66664

3
77775: (11)

At the first mode (r ¼ 1), the available peak values in the FRF data were denoted as H11,1, H21,1, H31,1, H41,1, H22,1, H32,1, H42,1,
H33,1, H43,1, and H44,1. These values can then be utilised to evaluate the related components. The chosen four items of the
values H11,1, H21,1, H31,1, and H41,1 with o=o1, x=x1, and m1=1 were used to evaluate the components f11=f41 of the first
pseudo mode shape vector. The procedures are indicated as follows:

f11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ix1o2

1H11;1

q
; (12a)

f21 ¼ 2ix1o2
1H21;1=f11; (12b)

f31 ¼ 2ix1o2
1H31;1=f11; (12c)

f41 ¼ 2ix1o2
1H41;1=f11: (12d)

The components of the other pseudo mode shape vectors f1r�f4r (r=2,3,4) at the second, third, and fourth natural
frequencies can also be estimated in this manner. The pseudo mode shape matrix [U] was constructed using four mode
shape vectors{Vr} (r=1, 2,y, 4) with the components f1r�f4r in each vector:

½U� ¼ ½V1;V2;V3;V4� ¼

f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

2
66664

3
77775: (13)

Finally, the equivalent mass, damping, and stiffness matrices were established as follows:

½ME� ¼ ð½U�T Þ�1
½U��1; (14a)

½CE� ¼ ð½U�T Þ�1
½U��1; (14b)

½KE� ¼ ð½U�T Þ�1
½U��1: (14c)
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2.3. Phase modification

The actual peak values of the FRF curves are often inaccurate owing to the limited resolution of the data. This causes
deviation in the FRF curves of the original substructure and those of the equivalent substructure. Nevertheless, the defect
can be improved with phase modification at the resonance peaks. The peak values of the FRFs can be expressed as the
following complex numbers:

Hij;r ¼ jHij;rjcosyþ ijHij;r jsiny: (15)

When at the resonance peaks of a single degree of freedom system, the analytic phase difference between the excitation
and the response is either y=þ901 or y=�901. The criteria of phase modification at the resonance peaks were defined
as follows:
(a)
 If

tan�1 imaginary part of Hij;r

real part of Hij;r

� �
� þ903; Hij;r ¼ þjHij;rji; (16a)

If
(b)
tan�1 imaginary part of Hij;r

real part of Hij;r

� �
� �903; Hij;r ¼ þjHij;rji; (16b)
Substituting Eqs. (16a) and (16b) into Eqs. (12a)–(12d), the mode shape vectors f1r, f2r, f3r and f4r, and the pseudo
mode shape matrix were obtained.

2.4. Numerical optimisation

If the number of the components of the mode shape vectors f1r�f4r equals the number of the chosen peak values H11,1,
H21,1, H31,1 and H41,1, the pseudo mode shape vectors can be directly estimated by referring to the procedures detailed in Eqs.
(12a)–(12d). However, some other peaks such as H22,r, H32,r, H42,r, H33,r, H43,r, and H44,r were not considered. To accurately
evaluate the components of the pseudo mode shape vectors, it became necessary to use all the peak values.

Here, the procedure of numerical optimisation was introduced to search for the optimum components of the pseudo
mode shape vectors with consideration of all the peak values. Referring to Eq. (10), a peak value Hij,r was defined as the
observed value in the FRF curve, and a predicted value was defined as firfjr=mr2ixro2

r . Given the set of components fir and
fjr, the normalised residual function Rðfir ;fjrÞ representing the deviation between the observed value and the predicted
one was expressed as follows:

Rðfir ;fjrÞ ¼
firfjr

Hij;rmr2ixro2
r

� 1: (17)

To make the obtained peak value from the mathematical model of prediction firfjr=mr2ixro2
r closer to the observed

peak value Hij,r, the residual value should be as small as possible.
Therefore, with the intention to drive M predicted values closer to the corresponding peak values, the sum of the square

of all normalised residual values at the rth mode must be minimised. As such, an optimisation model for minimising the
objective function F(fir, fjr), which was defined as the sum of square of the normalised residual functions with the set of
variables fir and fjr, was expressed as follows:

Minimise : Fðfir ;fjrÞ ¼
XM
m¼1

ðWij;rRðfir ;fjrÞ
2
Þm; (18a)

Initial values : fir ¼ f�ir ;fjr ¼ f�jr ; (18b)

where Wij,r are the weighting factors represented as real numbers; and f�ir and f�jr are the initial values of the variables that
can be precalculated from Eqs. (12a)–(12d).

The optimisation problem was solved precisely using the Gauss–Newton method [24], because this can save a
substantial amount of computing time and has a great advantage over other methods in many engineering applications.
By minimising Eq. (18a), the optimum values of these variables that best match the results from the prediction model to the
peak values of FRF curves were thus identified.

2.5. Finite element model of the rotor–bearing–foundaton system

A simple rotor–bearing FE model generally incorporates a rotating shaft that considers the shear effect (the so-called
Timoshenko rotor) with two linear bearings that were represented as the bearing coefficients. The rotor and bearing
models are described in the literature [25] and have been adopted for study in the field of rotordynamics. The
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rotor–bearing–foundation model can be presented schematically as shown in Fig. 2, with the superscripts R, B, and
F representing the rotor, bearing, and foundation, respectively.

The rotor was located at the centre of the figure as represented by the matrices [MR], [CR] and [KR], and the foundation
was denoted as the matrices [MF], [CF], and [KF]. The bearings that support the rotor were characterised as the damping
matrix [CB] and the stiffness matrix [KB]. The corresponding elements of these two matrices of the bearing properties are as
follows:

½CB� ¼
CB

XX CB
XY

CB
YX CB

YY

" #
; (19a)

½KB� ¼
KB

XX KB
XY

KB
YX KB

YY

" #
: (19b)

The matrices of the rotor structure with the gyroscopic effect were built via the derived rotor element [26]. At the same
time, the foundation structure was replaced by the equivalent matrices. By including the equivalent foundation matrices in
the rotor–bearing system, it was possible to write the model of the rotor–bearing–foundation system as follows:

MR 0

0 MF

" #
€Z

R

€Z
F

( )
þ

CR þ CB �CB

�CB CB þ CF

" #
_Z

R

_Z
F

( )
þ

KR þ KB �KB

�KB KB þ KF

" #
ZR

ZF

( )
¼

0

0

� �
; (20)

where {Z}={X,Y}T is the displacement vector.
Meanwhile, Eq. (20) was used to produce the FRF curves of the rotor–bearing system with the equivalent foundation

matrices at the bearing supports. The corresponding results were utilised to examine how close they were to those of the
original system constructed with the commercial FE software ANSYS 10.0.

3. Rotor–bearing–solid foundation system

The full FE model consisting of a single rotor, two bearing supports, and a solid foundation was built with ANSYS to solve
the system’s FRF curves. To demonstrate the procedures of the presented algorithm, the foregoing foundation was replaced
with the identified mass, damping, and stiffness matrices through both the original PMSM and the modified PMSM
methods for comparison. Fig. 3 shows the geometry of the solid foundation, which was constructed out of the cast iron; as
can be seen, its bottom area was left hollow. The bearing supports were constructed as a pair of isosceles triangular
structures located at both ends of the solid foundation. The whole foundation structure was meshed with three-
dimensional elements (series 45 solid element). Each tip of the isosceles triangular structures was set with a lumping mass
of 9 kg as the weight of the bearing. Table 1 presents the details of the dimensions of the foundation and the corresponding
material properties.

The flexible stiffness KF of the rotor was defined with the formula FU/d, where FU was the unit force applied at the centre
along the length of the rotor while assuming a fixed boundary at both ends of the rotor to produce the defection d.
The grounding stiffness KG–Xn and KG�Yn in the horizontal and vertical directions were set at the four corners (numbered as
n=1–4) of the foundation bottom structure. The values of the grounding stiffness were set as KG�X4=KG�Y3=0.01�KF,
KG�X2=KG�X3=KG�Y4=0.05�KF, KG�Y2=0.1�KF, and KG�X1=KG�XY1=1�KF.
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Fig. 3. Schematic of the boundary conditions in a solid foundation.

Table 1
Material properties and dimensions of the solid foundation (thickness: 0.02 m).

Material properties (cast iron)

Young’s modulus (�1010 Pa) 9.500

Shear modulus (�1010 Pa) 3.650

Density (kg/m3) 7250

Poisson’s ratio 0.300

Foundation dimensions (bottom hollow board)

Outer length (�10�3 m) 1046.610

Outer wide (�10�3 m) 305.556

Inner length (�10�3 m) 966.610

Inner wide (�10�3 m) 225.556

Bearing supports high (�10�3 m) 76.389

Fig. 4. Finite element model for a rotor–bearing–solid foundation system.
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Afterwards, the foundation FRF curves were generated by treating the foundation as the substructure and then taking
the output at the two bearing supports using ANSYS. As can be seen in Fig. 1, the DOFs at the two supports in the horizontal
direction were represented as 1 and 3, while those in the vertical direction were represented as 2 and 4. Based on the total
number of four DOFs at the two joints of the substructure, a total of ten FRF curves were obtained.

The rotor–bearing–solid foundation system is shown in Fig. 4. The rotor model is referred to as the Model based
DIAgnostics in ROTating machines (MODIAROT) system as listed in [27]. The rotor has a length of 1.255 m and a weight of
40.110 kg, with a flexible stiffness of KF=0.305�106 N/m. It was modelled with the line element (series 16 pipe element).
The bearing coefficients were set to connect the supports of the foundation with the rotor journals. The coefficients were
set using mathematical matrices (series 27 matrix element). Each of the 24 rotor nodes had four DOFs with two lateral
translations and two bending rotations, and each of the eight nodes at the solid foundation had three DOFs with three
lateral translations. There were a total of 10,770 DOFs (2990 elements) in the solid foundation and 10,866 DOFs (3013
elements) in the system.

The full FE model of the rotor–bearing–solid foundation is hereby referred to as the system with the original solid

foundation. In contrast, the system model for which the equivalent matrices have replaced the foundation in the original
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model was referred to as the system with the equivalent solid foundation. In this example, the FRF curves of the equivalent
whole structure with a static rotor (ignoring the gyroscopic effect) were estimated via the self-developed FE codes [22].
The anisotropic bearings with the stiffness coefficients KB

XX=1�106 N/m and KB
YY =3�106 N/m were set between the rotor

journals and the supports.
4. Identifying the FRF results of the solid foundation system

In this section, the FE model of the solid foundation is hereby referred to as the original solid foundation, while the
estimated equivalent matrices of the solid foundation are referred to as the equivalent solid foundation. These equivalent
matrices were further employed to replace the original solid foundation of the whole system to perform the dynamic
analysis. This section proved that the differences in the dynamic properties of the original system and those of the system
with the equivalent solid foundation can be improved considerably by incorporating the modified procedures into
the PMSM.
4.1. Equivalent solid foundation taking the first four sets of modal parameters

The FRF curves of the solid foundation at the supports within the frequency range of 0–50 Hz were previously obtained
from the FE model. The resulting FRF curves with the first four sets of modal parameters were used to estimate the pseudo
mode shape vectors. In the PMSM, the components of the pseudo mode shape vectors with complex number were obtained
via Eqs. (12a)–(12d). Nevertheless, with the phase modification criteria of Eqs. (16a) and (16b) in the modified PMSM, the
peak values of the FRF curves can be transformed into pure imaginary numbers. These numbers can be substituted into Eq.
(17) to cancel out the imaginary part of the normalised residual function. With the optimisation problem listed in Eqs. (18a)
and (18b), the pseudo mode shape vectors of real numbers were thus obtained. By using the pseudo mode shape matrix,
the equivalent mass, damping, and stiffness matrices of the solid foundation were estimated in Eqs. (14a)–(14c).

The results of the FRF curves both for the original and the equivalent solid foundations are plotted in Fig. 5. In this case,
even by taking only the first four sets of modal parameters, the resulting FRF curves of the modified PMSM and the original
PMSM were quite similar. However, these FRF curves began to deviate with those of the FE model at a frequency of 20 Hz,
although all three of them were almost the same within the frequency range of 0–20 Hz. This could be attributed to the fact
that the fifth natural frequency (30.856 Hz) was very close to the fourth natural frequency (27.848 Hz), and the deviation of
the FRF curves was observed near the fourth natural frequency. To improve the accuracy of the results within the frequency
range of 20–50 Hz, the identification procedures is expected to increase the number of modal parameters.
Fig. 5. Frequency-response function curves of the solid foundation taking the first four sets of modal parameters: (a) H22, (b) H23, (c) H33 and

(d) H34. , Original; , modified PMSM (equivalent); and – – –, PMSM (equivalent).
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4.2. Equivalent solid foundation taking the first six sets of modal parameters and the weighting factors

To make the distribution of natural frequencies of the equivalent foundation within 0–50 Hz the same as those of the
original, the first six sets of the modal parameters were taken into consideration. The dimension of the equivalent mass,
damping, and stiffness matrices expanded from 4� 4 to 6� 6. Although the six sets of modal parameters were adopted, the
actual existing number of components in the mode shape vector was four (i.e., two DOFs in each of the supports and a total
of two supports on the system). Each mode shape vector (column vector) added the two assumed values at the fifth and
sixth components as long as the formed mode shape vectors were linearly independent [20]. A prior check-up for the
condition number of the pseudo mode shape matrix thus became necessary to ensure the non-singularity of the obtained
matrix.

Fig. 6 shows the FRF curves of the original and equivalent solid foundations, respectively. The fifth and sixth natural
frequencies have been included in the equivalent FRF curves. However, within the frequency range of 20–50 Hz, the
equivalent FRF curves still did not fully match the original ones regardless of the PMSM or the modified PMSM. The notable
deviation appeared in curves H23 and H34. To further improve the accuracy of the FRF curves, the weighting factors
W22,4=100, W23,4=100,W34,4=500, W34,5=500, and W34,6=500 were introduced to the modified PMSM. These weighting
factors as indicated in Eq. (18a) can be adjusted empirically by checking the obtained FRF results. For example, owing to
larger deviations that appeared within the frequency range between 20–50 Hz, the weighting factors that corresponded to
the residual functions of the fourth, fifth, and sixth modes were adjusted effectively after performing some trial procedures.

Fig. 7 depicts the resulting FRF curves for the original and equivalent solid foundations. As can be seen, the FRF curves of
the modified PMSM with the weighting factors have the best fitting results. It should be noted that the deviations of the H23

and H34 curves shown in Fig. 6 have been corrected within the frequency range of 20–50 Hz. The calculated equivalent
matrices for evaluating the FRF curves of the system with the equivalent solid foundation are listed in Table 2.

4.3. System with the equivalent solid foundation

The FRF curves of the original and the equivalent whole structures at the rotor journals are shown in Fig. 8. By applying
the equivalent foundation matrices (Table 2) in the whole system, the fitting results of the FRF curves with the modified
PMSM are shown to be much the same as the FE results within the frequency range of 0–30 Hz. Nevertheless, the curves of
H23 and H34 between 30–45 Hz showed little deviations. This was because the seventh or higher modal parameters were
not yet considered. This resulted in the not so satisfactory accuracy of the identified equivalent foundation matrices;
whereas it was noted that with the equivalent matrices that came from the PMSM without modifications, obvious
deviations were also observed after 25 Hz. In addition, larger errors in the (Equivalent-Original)/Original natural frequency
ratios were distinguished at the sixth and seventh modes with 3.13% and 3.81%, respectively. In summary, with the
dynamic properties of the system with the equivalent solid foundation fairly close to those of the system with the original
Fig. 6. Frequency-response function curves of the solid foundation taking the first six sets of modal parameters: (a) H22, (b) H23, (c) H33, and (d) H34.

, Original; , modified PMSM (equivalent); and – – –, PMSM (equivalent).
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Fig. 7. Frequency-response function curves of the solid foundation taking the first six sets of modal parameters and the weighting factors: (a) H22; (b) H23;

(c) H33; (d) H34. , Original; , modified PMSM (equivalent); – – –, PMSM (equivalent).

Table 2
Equivalent matrices (6� 6) of the solid foundation.

Row Column

1 2 3 4 5 6

Mass matrix

1 26.652 120.021 6.922 –176.545 –52.807 7.483

2 120.021 1517.831 81.982 –2200.511 –643.132 88.992

3 6.922 81.982 19.415 –120.277 –34.987 4.818

4 –176.545 –2200.511 –120.277 3236.141 941.599 –130.281

5 –52.807 –643.132 –34.987 941.599 275.799 –38.251

6 7.483 88.992 4.818 –130.281 –38.251 5.318

Damping matrix

1 57.149 192.642 –7.132 –293.461 –88.404 12.861

2 192.642 3311.861 137.661 –4456.441 –1300.731 177.048

3 –7.132 137.661 21.087 –184.168 –53.335 7.161

4 –293.461 –4456.441 –184.168 6057.331 1772.521 –242.687

5 –88.404 –1300.731 –53.335 1772.521 519.449 –71.316

6 12.861 177.048 7.161 –242.687 –71.316 9.850

Stiffness matrix

1 71.463�104 2.414�106 –88.861�103 –3.676�106 –1.107�106 16.111�104

2 2.414�106 4.141�107 1.721�106 –5.573�107 –1.626�107 2.214�106

3 –88.861�103 1.721�106 26.355�104 –2.302�106 –66.679�104 89.546�103

4 –3.676�106 –5.573�107 –2.302�106 7.576�107 2.217�107 –3.035�106

5 –1.107�106 –1.626�107 –66.679�104 2.217�107 6.497�106 –89.215�104

6 16.111�104 2.214�106 89.546�103 –3.035�106 –89.215�104 12.323�104
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solid foundation, it has been proven that the modified procedures in the PMSM are effective measures in improving the
calculation accuracy.

5. Industrial application

In the previous case study with FE, the simulation results confirm without a doubt the feasibility of using the equivalent
matrices to replace the original substructure in the dynamic analysis of the whole system. However, these results are all
based on the numerical investigations. This section thus aims to apply the corresponding algorithm to practical industrial
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Fig. 8. Frequency-response function curves of the solid foundation system: (a) H22, (b) H23, (c) H33, and (d) H34. , Original; , modified PMSM

(equivalent); and – – –, PMSM (equivalent).
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applications. Toward this goal, the housing of an induction motor was adopted as a realistic case study to identify its
equivalent matrices. Both sets of results obtained from using the presented method and the experimental investigations
were discussed.

5.1. Squirrel-cage induction motor system

The squirrel-cage induction motor is one of the typical industrial rotating machineries currently being used. It is often
seen in the manufacturing machinery to link to a hydraulic pump that serves as the power source in the hydraulic system
of the machine. Fig. 9 shows the construction of the squirrel-cage motor system, which includes the main components such
as the rotating shaft, ball bearings, and housing. As can be seen in the part of the rotor, the rotating shaft is mounted to the
laminated silicon steel sheets and is supported by two ball bearings located near the front and rear ends of the shaft. On the
part of the stator, the field copper coils are wound into a form of four poles with the laminated silicon steel sheets to receive
the three-phase AC power of 100 Hz frequency. This, in turn, will produce a rotating magnetic field to drive the rotor up to a
working speed of 3000 rpm. The bearing supports were specifically designed to be placed on the front and rear panels of
the housing to simplify the assembly procedures.

In a previously published work [22], the authors developed a vibration analysis module for solving the dynamic
behaviour of rotor–bearing systems by taking the motor as a studied case for demonstration. The housing assembly of the
motor consists of its outer shell, the field copper coils built inside, and the laminated silicon steel sheets. Hence, the above-
mentioned analysis has not yet considered the housing effect, because building an accurate model of housing is very
difficult and time-consuming. Instead, the modified PMSM was adopted to estimate the equivalent matrices of the housing
assembly without having to build the actual model as those in the traditional FE method.

5.2. Experimental setup

The schematic of the experimental setup for the tested housing is shown in Fig. 10. The motor housing is rigidly fixed
through its bottom bracket with four bolts on a metal table with several mounting holes as shown in the figure. All of the
rotor elements such as the rotating shaft, laminated silicon steel sheets, and bearings have been removed from the motor
housing. Hence, the system of the housing structure merely consists of the laminated silicon steel sheets, field copper coils,
panels, and bearing supports. The equivalent matrices can be estimated by performing modal testing at the bearing
supports. The testing points were respectively denoted as 1-DOF and 2-DOF in the horizontal and vertical directions at the
front support, as well as the 3-DOF and 4-DOF at the rear support. The accelerometer (KISTLER 8732A500) attached and the
hammer (PCB 086C01) applied at these points, in turn, measure the signals of lateral acceleration and impulsive force with
the sampling rate of 1.28 kHz. The corresponding FRF curves were calculated from the spectrum analyzer (SigLab Model
20-42) and were displayed on a laptop computer (IBM A30 2652) within the frequency range of 25–150 Hz to ensure the
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Fig. 10. Experimental setup for the modal testing of motor housing.

Fig. 9. Constructions of the squirrel-cage motor system.
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linear responses of sensor voltage. These FRF curves were used to construct the FRF matrix (Eq. (11)) once the initial
identification procedure was initiated.

5.3. Equivalent motor housing

The FRF curves of the motor housing at the bearing supports were obtained from the experimental modal testing.
The first four sets of modal parameters with their corresponding peak values were used to estimate the equivalent matrices
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Table 3
Equivalent matrices (4� 4) of the motor housing.

Row Column

1 2 3 4

Mass matrix

1 249.995�10�6 87.365�10�6 246.375�10�6 –84.789�10�6

2 87.365�10�6 438.441�10�6 338.806�10�6 –309.701�10�6

3 246.375�10�6 338.806�10�6 554.171�10�6 –300.693�10�6

4 –84.789�10�6 –309.701�10�6 –300.693�10�6 265.361�10�6

Damping matrix

1 12.496�10�3 8.822�10�3 13.667�10�3 –7.506�10�3

2 8.822�10�3 33.100�10�3 26.711�10�3 –23.648�10�3

3 13.667�10�3 26.711�10�3 33.777�10�3 –21.488�10�3

4 –7.506�10�3 –23.648�10�3 –21.488�10�3 18.985�10�3

Stiffness matrix

1 25.737 13.751 12.765 –13.016

2 13.751 110.327 107.081 –72.789

3 12.765 107.081 147.869 –87.827

4 –13.016 –72.789 –87.827 65.779

Fig. 11. Frequency-response function curves of the motor housing: (a) H12, (b) H14, (c) H24, and (d) H34. , Original; , equivalent.
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of the housing. The calculated equivalent matrices of the housing are listed in Table 3. The results of the FRF curves
(H12, H14, H24, and H34) are plotted in Fig. 11. In the figure, the structure of the motor housing is hereby referred to as the
original motor housing, while the estimated equivalent matrices of the solid foundation are referred to as the equivalent

motor housing. The comparisons of the natural frequencies are listed in Table 4.
The figure shows that there is a deviation somewhere between the curves of the equivalent and the original, but their

shapes are similar in nature. The ratios of the errors of frequency were within the range of 75% except for the first natural
frequency curve of H14. The reasons behind the discrepancies between the results of identification and testing can be
inferred from two aspects: the assumption of the theoretical model and the quality of the signal data.

In Eq. (8), the actual FRF was described as the sum of the numerous sets of modal parameters and mode shapes. The
PMSM assumed that the effects of other modes for any peak values of FRF were ignored, and this simplified Eq. (8) into
Eq. (10). The only set of modal parameters and peak value was adopted to evaluate the mode shape of the corresponding
mode. On the other hand, each FRF curve needs to be reliable and highly correlated in order to obtain the correct modal
parameters. The demand is usually associated with the properties of the sensors, the capability of the analyzer, and the
correct testing manner.
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Table 4
Natural frequency (Hz) comparisons of the original and equivalent motor housings.

Mode Equivalent Original

H12 Error (%) H14 Error (%)

1 37.002 38.230 –3.212 30.993 19.388

2 69.454 68.585 1.267 69.542 –0.127

3 98.613 97.886 0.743 98.130 0.492

4 123.403 123.117 0.232 121.361 1.683

Original

H24 Error (%) H34 Error (%)

1 37.002 36.021 2.723 35.338 4.709

2 69.454 68.812 0.933 69.260 0.280

3 98.613 98.385 0.232 98.167 0.454

4 123.403 124.552 –0.923 125.557 –1.716
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6. Conclusions

In this paper, the FRF curves at the bearing supports were utilised to establish the accurate equivalent mass, damping,
and stiffness matrices of the foundation by using PMSM in tandem with the procedures of phase modification and
numerical optimisation. Some of the significant conclusions are summarised as follows:
1.
 The numerical study showed that the equivalent mass, damping, and stiffness matrices of the foundation (substructure)
can successfully replace the original substructure via the modified PMSM. Within a specific frequency range, the
corresponding results for the dynamic properties of the rotor–bearing system equipped with the equivalent matrices of
the foundation were the same as those of the system equipped with the FE model of foundation.
2.
 Increasing the number of sets of modal parameters led to the expansion of dimensions in the equivalent matrices’ of
dynamic properties at higher frequency ranges. The weighting factors of the objective function were adopted to enhance
the weighting of the squares of the residual values at certain modes. Consequently, the deviation between the
equivalent and original FRF curves can be corrected significantly at these modes.
3.
 To make the dynamic properties of the equivalent foundation match those of the N modes of the original foundation,
at least Nþ1 sets of the modal parameters of the foundation FRF curves should be considered. In addition, to make the
dynamic properties of the equivalent whole structure fit better with those of the N modes of the original whole
structure, it was necessary to have at least Nþ2 sets of modal parameters of the foundation FRF curves.
4.
 The feasibility of the modified PMSM was confirmed experimentally via the study of a realistic motor housing.
The results also showed that the dynamic properties of a complex substructure can be described as matrices with
limited dimensions. The accuracy of the identified results depended on, among others, the number of modal
participations, the precision of modal parameters, and the quality of measured FRF curve data.

The purpose of the modified PMSM described in this paper is to solve real-world engineering problems. Using the limited
FRF data, engineers obtain the equivalent substructure model while avoiding tedious FE modelling processes. By
associating the method with other applications, it can have a wide range of practical advantages, such as developing the
online diagnostics of rotor system by improving its computer simulation efficiency.
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